

= (Do Not Reject)

Box 13.1B

≠ (Reject)

Box 13.1C

NO

Population Variance

 $= \text{or} \neq$

(F Test 13.4)

BOX 11.2

BOX 12.1

 σ known?

YES

BOX 13.1A

11.2	1-Tail (Left Tail)	2 -Tail	1 – Tail (Right Tail)					
H_0 H_1	$\mu = \mu_0$ $\mu < \mu_0$	$\mu = \mu_0$ $\mu \neq \mu_0$	$\mu = \mu_0$ $\mu > \mu_0$					
Test Stat	$z = \frac{\overline{x} - \mu}{\sigma}$							
Reject	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Conf.	LCL <i>x</i>	$\frac{z > z_{\alpha/2}}{-z_{\alpha/2} \frac{\sigma}{\sqrt{n}}} UCL \ \bar{x}$	$+ Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$					
Limits								
12.1	1-Tail (Left Tail)	2 -Tail	1 – Tail (Right Tail)					
H_0 H_1	$\mu = \mu_0$ $\mu < \mu_0$	$\mu = \mu_0$ $\mu \neq \mu_0$	$\mu = \mu_0$ $\mu > \mu_0$					
Test Stat		$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$						
Reject If	$t < -t_{\alpha,v}$	$\begin{array}{c} t < -t_{\alpha/2,v} \text{ OR} \\ t > t_{\alpha/2,v} \end{array}$	$t > t_{\alpha,v}$					
d.f. Conf.	v = n - 1 [Rou LCL \bar{x} -	nd down to nearest $\frac{s}{1-t_{\pi/2}}$ UCL \bar{x}	# in table] + $t_{a/2,a} = \frac{s}{s}$					
Limits		$\alpha/2, \nu, \sqrt{n}$	$\sqrt{\alpha/2}, \sqrt{n}$					
12.2	1-Tail (Left Tail)	2 -Tail	1 – Tail (Right Tail)					
H ₀ H ₄	$\sigma^2 = \#$ $\sigma^2 < \#$	$\sigma^2 = \#$ $\sigma^2 \neq \#$	$\sigma^2 = \#$ $\sigma^2 > \#$					
Test	0 (1	$\chi^2 = \frac{(n-1)s^2}{2}$	0 / 11					
Reject If	$\chi^2 < \chi^2_{1-\alpha,v}$	$\chi^2 < \chi^2_{1-\alpha/2,\nu}$ OR $\chi^2 > \chi^2_{1-\alpha/2,\nu}$	$\chi^2>\chi^2_{\alpha,v}$					
d.f.		v = n - 1	$(n-1)e^2$					
Limits	LCL	$\frac{(h-1)s}{\chi^2_{\alpha/2,\nu}}$ UCL	$\frac{(n-1)s}{\chi^2_{1-\alpha/2},v}$					
12.3	1-Tail	2 -Tail	1 – Tail					
Ho	(Left Tail) n = #	<i>n</i> = #	(Right Tail) n = #					
H ₁	p :: p < #	$p \neq \#$	p > #					
Note Test	# must be a value between 0 and 1 inclusive $x = \frac{\hat{p} - p}{\hat{p} - p} \qquad \hat{n} = \frac{x}{16} \text{ for a result}$							
Stat	$z = \frac{1}{\sqrt{\frac{p(1-p)}{n}}} \qquad \qquad p = \frac{1}{n} \left[lf \text{ not } given \right]$							
Reject If	$z < -z_{\alpha}$	$z < -z_{\alpha/2} \text{ OR}$ $z > z_{\alpha/2}$	$z > z_{\alpha}$					
Req'd	For z-test: us For Conf. Lim:	e only if $np > 5$ and use only if $n\hat{p} > 5$ a	l n(1-p) > 5 $nd n(1-\hat{p}) > 5$					
Limite	LCL $\hat{p} = Z_{abc}$	$\hat{p}(1-\hat{p})$ IICI	$\hat{n} + Z_{n(0)} = \frac{\hat{p}(1-\hat{p})}{\hat{p}(1-\hat{p})}$					
Linnts	P -u/2	n occ	$p + 2\alpha/2 \sqrt{n}$					
13.1.a	1-Tail	2 -Tail	$p + 2\alpha/2 \sqrt{n}$ 1 - Tail					
13.1.a	1-Tail (Left Tail) $\mu_1 - \mu_2 = D$	$\frac{2 - \text{Tail}}{\mu_1 - \mu_2 = D}$	$\frac{1 - \text{Tail}}{(\text{Right Tail})}$ $\mu_1 - \mu_2 = D$					
13.1.a H ₀ H ₁ Note:	1-Tail (Left Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ Die the	$2 - \text{Tail}$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 \neq D$ a difference between	$1 - Tail$ (Right Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means					
Linits 13.1.a H_0 H_1 Note: Test	1-Tail (Left Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually	$\frac{2 - \text{Tail}}{\mu_1 - \mu_2 = D}$ $\frac{\mu_1 - \mu_2 \neq D}{\mu_1 - \mu_2 \neq D}$ e difference between 0 unless otherwise s	$\frac{1 - \text{Tail}}{(\text{Right Tail})}$ $\frac{\mu_1 - \mu_2 = D}{\mu_1 - \mu_2 > D}$ 2 means pecified)					
H_{0} H_{1} Note: Test Stat	1-Tail (Left Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually z =	$\sum_{n} n = 0$ $2 - \text{Tail}$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 \neq D$ $2 \text{ difference between}$ $(0 \text{ unless otherwise s})$ $= \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1)}{\left(\overline{\sigma_1^2} + \frac{\sigma_2^2}{2}\right)}$	$\frac{1 - \text{Tail}}{(\text{Right Tail})}$ $\frac{\mu_1 - \mu_2 = D}{\mu_1 - \mu_2 > D}$ 2 means specified) $-\mu_2)$					
$\frac{13.1.a}{H_0}$ $\frac{H_1}{Note:}$ Test Stat	1-Tail (Left Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually z = z < -z	$\frac{2 - \text{Tail}}{\mu_1 - \mu_2 = D}$ $\frac{\mu_1 - \mu_2 \neq D}{\mu_1 - \bar{x}_2 - 1}$ e difference between 0 unless otherwise e $= \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $z < -z_{-\nu} \circ OR$	$\frac{1 - \text{Tail}}{(\text{Right Tail})}$ $\frac{\mu_1 - \mu_2 = D}{\mu_1 - \mu_2 > D}$ 2 means $\frac{\mu_1 - \mu_2 > D}{2 \text{ means}}$ $\frac{\mu_2}{2}$					
$\frac{13.1.a}{H_0}$ $\frac{H_1}{Note:}$ Test Stat Reject If Conf	1-Tail (Left Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually z = $z < -z_{\alpha}$	$\sum_{n} \sum_{n} \sum_{j=1}^{n} \sum_{j$	$\frac{1 - \text{Tail}}{(\text{Right Tail})}$ $\frac{1 - \text{Tail}}{\mu_1 - \mu_2} = D$ $\frac{\mu_1 - \mu_2 > D}{2 \text{ means}}$ $\frac{1}{2} \text{ cyclical}$ $\frac{z > z_{\alpha}}{z_{\alpha}}$					
$\frac{13.1.a}{H_0}$ $\frac{H_1}{Note:}$ Test Stat $\frac{Reject}{If}$ Conf. Limits	$1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 = D$ D is the (usually) $z =$ $z < -z_{\alpha}$ LCL	$\sum_{n} \frac{2 - \text{Tail}}{2 - \text{Tail}}$ $\frac{\mu_1 - \mu_2 = D}{\mu_1 - \mu_2 \neq D}$ e difference between $t = \frac{(\vec{x}_1 - \vec{x}_2) - (\mu_1 - \frac{1}{\sqrt{n_1^2 + n_2^2}})}{\sqrt{n_1^2 + n_2^2}}$ $\frac{(\vec{x}_1 - \vec{x}_2) - (\mu_1 - \frac{1}{\sqrt{n_1^2 + n_2^2}})}{(\vec{x}_1 - \vec{x}_2) - z_{\alpha/2}\sqrt{n_1^2}}$	$\frac{1 - \text{Tail}}{(\text{Right Tail})}$ $\frac{\mu_1 - \mu_2 = D}{\mu_1 - \mu_2 = D}$ 2 means ppecified) $-\mu_2$ $z > z_a$ $\frac{r_1^2 + \frac{\sigma_2^2}{\sigma_2}}{r_1 + r_{n_2}^2}$					
$\frac{13.1.a}{H_0}$ $\frac{H_1}{Note:}$ Test Stat $\frac{Reject}{If}$ Conf. Limits	$1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually) $z =$ $z < -z_{\alpha}$ LCL UCI	$\sum_{n} \sum_{n} \sum_{j=1}^{n} \sum_{j$	$p + 2a/2 \sqrt{n}$ $1 - Tail$ (Right Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means specified) $-\mu_2$ $z > z_a$ $\frac{r_1^2 + \frac{\sigma_2^2}{r_1}}{r_1 + \frac{\sigma_2^2}{r_2}}$					
13.1.a H_0 H_1 Note: Test Stat Reject If Conf. Limits 13.1.b	1-Tail (Left Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually z = $z < -z_{\alpha}$ LCL UCI 1-Tail	$\sum_{n} \frac{1}{2 - \text{Tail}} \frac{2 - \text{Tail}}{\mu_1 - \mu_2 = D}$ $= \frac{\mu_1 - \mu_2 \neq D}{\mu_1 - \mu_2 \neq D}$ $= \frac{(\vec{x}_1 - \vec{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \frac{1}{(\vec{x}_1 - \vec{x}_2) - (\mu_1 - \mu_2)} \frac{1}{(\vec{x}_1 - \mu_2)} \frac$	$\frac{1 - \text{Tail}}{(\text{Right Tail})}$ $\frac{1 - \text{Tail}}{\mu_1 - \mu_2 = D}$ $\frac{\mu_1 - \mu_2 > D}{2 \text{ means}}$ $\frac{1 - \mu_2}{2 \text{ means}}$ $\frac{1}{r_1^2 + \frac{\sigma_1^2}{n_2}}$ $\frac{r_1^2 + \frac{\sigma_1^2}{n_2}}{r_1^2 + \frac{\sigma_2^2}{n_2}}$ $1 - \text{Tail}$					
$\frac{13.1.a}{H_0}$ $\frac{H_1}{Note:}$ Test Stat $\frac{Reject}{If}$ Conf. Limits $13.1.b$ H_0	$1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually) $z =$ $z < -z_{\alpha}$ LCL UCL $1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 = D$	$\sum_{n} \frac{2 - \text{Tail}}{2 - \text{Tail}}$ $\frac{\mu_1 - \mu_2 = D}{\mu_1 - \mu_2 = D}$ $\frac{\mu_1 - \mu_2 \neq D}{2 \text{ difference between}}$ $Q \text{ unless otherwise a} = \frac{(\vec{x}_1 - \vec{x}_2) - (\mu_1 - \frac{\pi_2}{2})}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $z < -z_{a/2} \text{ OR}$ $z > z_{a/2}$ $(\vec{x}_1 - \vec{x}_2) - z_{a/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ $(\vec{x}_1 - \vec{x}_2) - z_{a/2} \sqrt{\frac{\sigma_1^2}{n_2} + \frac{\sigma_2^2}{n_1}}$ $2 - \text{Tail}$ $\mu_1 - \mu_2 = D$	$\frac{1 - \text{Tail}}{(\text{Right Tail})}$ $\frac{1 - \text{Tail}}{\mu_1 - \mu_2 = D}$ $\frac{\mu_1 - \mu_2 > D}{2 \text{ means}}$ $\frac{pecified}{r_1}$ $\frac{r_1^2}{r_2} + \frac{\sigma_1^2}{\sigma_2}$ $\frac{r_1^2}{r_1^2} + \frac{\sigma_2^2}{\sigma_2}$ $1 - \text{Tail}$ (Right Tail) $\mu_1 - \mu_2 = D$					
$\begin{array}{c} 13.1.a \\ H_0 \\ H_1 \\ Note: \\ \hline Test \\ Stat \\ \hline If \\ Conf. \\ Limits \\ \hline 13.1.b \\ H_0 \\ H_1 \end{array}$	1-Tail (Left Tail) $\mu_1 - \mu_2 = D$ D is the (usually) $z =$ $z < -z_{\alpha}$ LCL UCL UCL 1-Tail (Left Tail) $\mu_1 - \mu_2 < D$	$\sum_{n} = 0.02$ $2 - \text{Tail}$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 \neq D$ difference between / 0 unless otherwise $\frac{1}{2}$ $= \frac{(\vec{x}_1 - \vec{x}_2) - (\mu_1)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $z < -z_{\alpha/2} \text{ OR}$ $z > z_{\alpha/2}$ $(\vec{x}_1 - \vec{x}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1^2}}$ $2 - \text{Tail}$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 \neq D$	$p + 2\alpha/2 \sqrt{n}$ $1 - \text{Tail}$ (Right Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means specified) $-\mu_2$ $z > z_{\alpha}$ $\frac{r_1^2}{r_1^2} + \frac{\sigma_1^2}{n_2}$ $\frac{r_1^2}{r_1^2} + \frac{\sigma_2^2}{n_2}$ $1 - \text{Tail}$ (Right Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$					
$\begin{array}{c} \text{13.1.a} \\ \hline H_0 \\ \hline H_1 \\ \text{Note:} \\ \hline \text{Test} \\ \text{Stat} \\ \hline \text{Reject} \\ \text{If} \\ \hline \text{Conf.} \\ \text{Limits} \\ \hline \\ 13.1.b \\ \hline H_0 \\ \hline H_1 \\ \text{Note:} \\ \end{array}$	$1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 = D$ $D \text{ is the (usually)}$ $z =$ $z < -z_{\alpha}$ LCL UCI $1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 < D$ $D \text{ is the (usually)}$ $\mu_1 - \mu_2 < D$ $D \text{ is the (usually)}$ $\mu_1 - \mu_2 < D$ $D \text{ is the (usually)}$ $\mu_1 - \mu_2 < D$	$\sum_{n} = 0$ $\sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j$	$p + 2a/2 \sqrt{n}$ $1 - Tail$ (Right Tail) $\mu_1 - \mu_2 = D$ 2 means pecified) $-\mu_2$ $z > z_a$ $\frac{r_1^2}{r_1} + \frac{\sigma_2^2}{r_2}$ $\frac{r_1^2}{r_1} + \frac{\sigma_2^2}{r_2}$ $1 - Tail$ (Right Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means specified)					
$\frac{13.1.a}{H_0}$ $\frac{H_1}{Note:}$ Test Stat $\frac{Reject}{If}$ Conf. Limits $\frac{13.1.b}{H_0}$ $\frac{H_1}{Note:}$ Test Stat	$1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually) $z =$ $z < -z_{\alpha}$ LCL UCI $1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 < D$ D is the (usually) $z = z$ LCL UCI $1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 < D$ LCL UCI $1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 < D$ LCL UCI $\frac{1-Tail}{(Left Tail)}$ $\mu_1 - \mu_2 < D$ LCL UCI	$\sum_{n} = 0.02$ $2 - \text{Tail}$ $\mu_1 - \mu_2 = D$ $\frac{\mu_1 - \mu_2 \neq D}{2 \text{ difference between}}$ $\frac{10 \text{ unless otherwise s}}{\sqrt{n_1} + \frac{\sigma_2^2}{n_2}}$ $\frac{z < -z_{\alpha/2} \text{ OR}}{z > z_{\alpha/2}}$ $(\bar{x}_1 - \bar{x}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{r_1}}$ $\frac{z < -z_{\alpha/2}}{\sqrt{n_1} + \frac{\sigma_2^2}{n_2}}$ $\frac{z < -z_{\alpha/2}}{\sqrt{n_1} + \frac{\sigma_2^2}{n_2}}$ $\frac{z < -z_{\alpha/2}}{\sqrt{n_1} + \frac{\sigma_2^2}{n_2}}$ $\frac{z - z_{\alpha/2}}{\sqrt{n_1} + \frac{\sigma_2^2}{n_2}}$	$\frac{1 - \text{Tail}}{(\text{Right Tail})} \frac{1 - \text{Tail}}{\mu_1 - \mu_2 = D} \frac{1}{\mu_1 - \mu_2} \frac{1}{\mu_2} \frac{1}{\mu$					
Hints13.1.a H_0 H_1 Note:TestStatRejectIfConf.Limits13.1.b H_0 H_1 Note:TestStatStatIf	$1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually) $z =$ $z < -z_{\alpha}$ LCL UCI $1-Tail$ $(Left Tail)$ $\mu_1 - \mu_2 < D$ D is the (usually) $t = \frac{(x_1 - x_2) - (\mu_1 - \mu_2)}{\sqrt{s_{\mu_1}^2 - (x_1 - \mu_2)}}$	$\sum_{n} = 0$ $\sum_{j=1}^{n} = 0$	$\begin{array}{c} 1 - \text{Tail} \\ (\text{Right Tail}) \\ \mu_1 - \mu_2 = D \\ \hline \mu_1 - \mu_2 = D \\ \hline 2 \text{ means} \\ \text{specified}) \\ \hline - \mu_2) \\ \hline \\ z > z_{\alpha} \\ \hline \\ \frac{z_1^2}{z_1^2} + \frac{\sigma_2^2}{n_2} \\ \hline \\ \frac{z_1^2}{z_1^2} + \frac{\sigma_2^2}{n_2^2} \\ \hline \\ 1 - \text{Tail} \\ (\text{Right Tail}) \\ \mu_1 - \mu_2 > D \\ \hline \\ \mu_1 - \mu_2 > D \\ 2 \text{ means} \\ \text{specified} \\ \hline \\ -1)s_1^2 + (n_2 - 1)s_2^2 \\ \hline \\ n_1 + n_2 - 2 \\ \hline \\ t > t_{\alpha, \nu} \end{array}$					
Hints13.1.a H_0 H_1 Note:TestStatRejectIfConf.Limits13.1.b H_0 H_1 Note:TestStatStatRejectIfd.f. G	$1-Tail (Left Tail) = \mu_1 - \mu_2 < D$ $\mu_1 - \mu_2 < D$ D is the (usually) z = z = z = z = z = z = z = z = z = z	$\sum_{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$	$p + 2a/2 \sqrt{n}$ $1 - Tail (Right Tail) \mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 = D$ 2 means ppecified) $-\mu_2$ $z > z_a$ $\frac{r_1^2 + \sigma_1^2}{r_1 + \sigma_2^2}$					
Limits13.1.a H_0 H_1 Note:TestStatI3.1.b H_0 H_1 Note:TestStatRejectIfTestStatRejectIfConf.Limits	$1-Tail (Left Tail)$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually) $z =$ $z < -z_{\alpha}$ LCL UCI $1-Tail (Left Tail)$ $\mu_1 - \mu_2 < D$ D is the (usually) $\mu_1 - \mu_2 < D$ (usually) $t = \frac{(s_1 - s_2) - (\mu_1 - \mu_2)}{\sqrt{s_1^2 (\frac{1}{m_1} + 1)}}$ $t < -t_{\alpha, \nu}$ $\nu = n_1 + n_2 - 2$ LCL (5)	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	$p + 2a/2 \sqrt{n}$ $1 - Tail (Right Tail)$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means pecified) $-\mu_2$ $z > z_a$ $\frac{r_1^2 + \frac{\sigma_2^2}{r_1}}{r_1 + r_2}$ $\frac{r_1^2 + \frac{\sigma_2^2}{r_1}}{r_1 + r_2}$ $\frac{1 - Tail}{(Right Tail)}$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means pecified) $-1 - \frac{r_1^2}{r_1^2 + r_2^2}$ $z > z_a$ $\frac{r_1^2 + \frac{\sigma_2^2}{r_1 + r_2}}{r_1 + r_2}$ $z > z_a$ $\frac{r_1^2 + \frac{\sigma_2^2}{r_1 + r_2}}{r_1 + r_2}$ $z > z_a$ $\frac{r_1^2 + \frac{\sigma_2^2}{r_1 + r_2}}{r_1 + r_2}$ $z > z_a$ $\frac{r_1^2 + \frac{\sigma_2^2}{r_1 + r_2}}{r_1 + r_2}$					
Limits13.1.a H_0 H_1 Note:TestStatRejectIfConf.Limits13.1.b H_0 H_1 Note:TestStatRejectIfd.f.Conf.Limits	$1-Tail (Left Tail) = \mu_1 - \mu_2 < D$ $\mu_1 - \mu_2 < D$ D is the (usually) $z = z$ $z < -z_{\alpha}$ LCL UCI $1-Tail (Left Tail) = \mu_1 - \mu_2 < D$ D is the (usually) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually) $t = \frac{(x_1 - x_2) - (\mu_1 - \mu_2)}{\sqrt{z_1^2} (\frac{1}{n_1} + t)}$ $t < -t_{\alpha,v}$ $v = n_1 + n_2 - 2$ LCL (3) UCL (3)	$\sum_{n} \sum_{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	$\begin{array}{c} 1 - \text{Tail} \\ (\text{Right Tail}) \\ \mu_1 - \mu_2 = D \\ \hline \mu_1 - \mu_2 = D \\ \hline 2 \text{ means} \\ \text{specified} \\ \hline - \mu_2 \\ \hline \\ z > z_a \\ \hline \\ \frac{r_1^2}{r_1^2} + \frac{\sigma_2^2}{n_2} \\ \hline \\ \frac{r_1^2}{r_1^2} + \frac{\sigma_2^2}{n_2^2} \\ \hline \\ 1 - \text{Tail} \\ (\text{Right Tail}) \\ \mu_1 - \mu_2 = D \\ \hline \\ \mu_1 - \mu_2 > D \\ 2 \text{ means} \\ \text{specified} \\ \hline \\ \frac{-1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \\ \hline \\ t > t_{a,v} \\ \hline \\ \frac{\text{arest $\#$ in table]}}{(\frac{1}{n_1} + \frac{1}{n_2})} \\ \hline \\ (\frac{1}{n_1} + \frac{1}{n_2}) \\ \hline \end{array}$					
Limits13.1.a H_0 H_1 Note:TestStatRejectIfConf.Limits13.1.b H_0 H_1 Note:TestStatRejectIfd.f.Conf.Limits	$1-Tail (Left Tail) = \mu_1 - \mu_2 < D$ $\mu_1 - \mu_2 < D$ D is the (usually) z = z = z = z = z = z = z = z = z = z	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	$p + 2a/2 \sqrt{n}$ $1 - Tail (Right Tail) \mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 = D$ 2 means ppecified) $-\mu_2)$ $z > z_{\alpha}$ $\frac{r_1^2 + \sigma_1^2}{r_1 + \sigma_2^2}$ $1 - Tail (Right Tail) \mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means ppecified) $-1)s_1^2 + (n_2 - 1)s_2^2$ $n_1 + n_2 - 2$ $t > t_{\alpha, \nu}$ arest # in table] $(\frac{1}{n_1} + \frac{1}{n_2})$ $(\frac{1}{n_1} + \frac{1}{n_2})$ ail)					
Limits13.1.a H_0 H_1 Note:TestStatRejectIfConf.Limits13.1.b H_0 H_1 Note:TestStatRejectIfd.f.Conf.Limits	$1-Tail (Left Tail) = \mu_1 - \mu_2 < D$ $\mu_1 - \mu_2 < D$ D is the (usually) z = z = z = z = z = z = z = z = z = z	$\sum_{n} = 0$ $\sum_{j=1}^{n} = 0$	$p + 2a/2 \sqrt{n}$ $1 - Tail (Right Tail) \\ \mu_1 - \mu_2 = D \\ \mu_1 - \mu_2 = D \\ 2 means \\ pecified) \\ -\mu_2)$ $z > z_{\alpha}$ $\frac{r_1^2}{r_1^2} + \frac{\sigma_1^2}{n_2} \\ \frac{r_1^2}{r_1^2} + \frac{\sigma_2^2}{n_2} \\ \frac{r_1^2}{r_1^2} + \frac{\sigma_2^2}{n_2} \\ \frac{r_1^2}{r_1^2} + \frac{\sigma_2^2}{n_2} \\ \frac{r_1 - Tail}{(Right Tail)} \\ \mu_1 - \mu_2 = D \\ \mu_1 - \mu_2 > D \\ 2 means \\ \frac{r_1 - \mu_2}{r_1 - \mu_2 - 2} \\ 2 means \\ \frac{r_1 - \mu_2}{r_1 - \mu_2 - 2} \\ \frac{r_1 - r_2}{r_1 - r_2} \\ \frac{r_1 - r_2}{r$					
Limits13.1.a H_0 H_1 Note:TestStatI3.1.b H_0 H_1 Note:TestStatRejectIfConf.Limitsd.f.Conf.Limits	$1-Tail (Left Tail)$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually) $z =$ $z < -z_{\alpha}$ LCL UCI $1-Tail (Left Tail)$ $\mu_1 - \mu_2 < D$ D is the (usually) $t = \frac{(x_1 - x_2) - (\mu_1 - \mu_2)}{\sqrt{z^2_p (\frac{1}{n_1} + \alpha_2)}}$ $t < -t_{\alpha,v}$ $v = n_1 + n_2 - 2$ LCL (3) UCL (3) $UCL (3)$ $The two variable (x_1 - x_2) - (x_1 - \alpha_2)$	$\sum_{n} = 0$ $\sum_{j=1}^{n} = 0$	$p + 2a/2 \sqrt{n}$ $1 - Tail (Right Tail)$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means ppecified) $-\mu_2$ $z > z_a$ $\frac{r_1^2 + \frac{\sigma_2^2}{r_1}}{r_1 + r_2}$ $\frac{r_1^2 + \frac{\sigma_2^2}{r_1}}{r_1 + r_2}$ $\frac{1 - Tail}{(Right Tail)}$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means $ppecified)$ $-1)s_1^2 + (n_2 - 1)s_2^2$ $n_1 + n_2 - 2$ $t > t_{a,v}$ arest # in table] $(\frac{1}{n_1} + \frac{1}{n_2})$ $(\frac{1}{n_1} + \frac{1}{n_2})$ ail) not independent) $umn j total$					
Limits13.1.a H_0 H_1 Note:TestStatRejectIfConf.Limits13.1.b H_0 H_1 Note:TestStatRejectIfd.f.Conf.Limits	1-Tail (Left Tail) $\mu_1 - \mu_2 = D$ D is the (usually z = $z < -z_{\alpha}$ LCL UCL 1-Tail (Left Tail) $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 < D$ D is the (usually z = $z < -z_{\alpha}$ LCL UCL z = $\mu_1 - \mu_2 < D$ LCL $(z = 1)^{-1}$ $\mu_1 - \mu_2 < D$ $\mu_1 - \mu_2 < D$ LCL (j UCL (j (j (j (j (j (j (j (j (j (j	$\sum_{n} = 0.02$ $2 - \text{Tail}$ $\mu_1 - \mu_2 = D$ $\frac{\mu_1 - \mu_2 \neq D}{2}$ $\frac{\mu_1 - \mu_2 \neq D}{2}$ $\frac{\mu_1 - \mu_2 \neq D}{\sqrt{n_1 + n_2^2}}$ $\frac{\pi_1 - \pi_2}{\sqrt{n_1 + n_2^2}}$ $\frac{\pi_2 - \pi_2}{\pi_2}$ $\pi_2 - \pi_2$	$p + 2a/2 \sqrt{n}$ $1 - Tail (Right Tail) \mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 = D$ 2 means ppecified) $-\mu_2$ $z > z_a$ $\frac{r_1^2}{r_1^2} + \frac{\sigma_2^2}{r_2^2}$ $\frac{r_1^2}{r_1^2} + \frac{\sigma_2^2}{r_1^2} + \frac{\sigma_2^2}{r_1^2}$ $\frac{r_1^2}{r_1$					
Limits13.1.a H_0 H_1 Note:TestStatI.1.b H_0 H_1 Note:TestStatRejectIfd.f.Conf.Limits15.2 H_0 H_1 TestStatStatRejectIfRejectIfRejectIf	$1-Tail (Left Tail) = \mu_1 - \mu_2 < D Disthctory for the second se$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	$p + 2a/2 \sqrt{n}$ $1 - Tail (Right Tail)$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means pecified) $-\mu_2$ $z > z_a$ $\frac{r_1^2}{r_1^4} + \frac{\sigma_1^2}{r_2^2}$ $\frac{r_1^2}{r_1^4} + \frac{\sigma_1^2}{r_2^2}$ $\frac{1 - Tail}{(Right Tail)}$ $\mu_1 - \mu_2 = D$ $\mu_1 - \mu_2 > D$ 2 means pecified) $-13s_1^2 + (n_2 - 1)s_2^2$ $n_1 + n_2 - 2$ $t > t a_a v$ arest # in table] $(\frac{1}{n_1} + \frac{1}{n_2})$ $(\frac{1}{n_1} + \frac{1}{n_2})$ ail) $mot independent)$ $mm j totat$ proportion!					

10.4	4 77 11		T 4		T 4		
13.1.c	1-Tail (Left Tail)	2 ·	-Tail	1 (Rig	– Tail Iht Tail)		
H_0	$\mu_1 - \mu_2 = D$	$\mu_1 -$	$\mu_2 = D$	μ_1 –	$\mu_2 = D$		
H_1	$\mu_1 - \mu_2 < D$	$\mu_1 - \mu_2 \neq D \qquad \mu_1 - \mu_2 > D$					
	U is the (usually	/ 0 unless	otherwise	z means pecified)		
Test Stat	$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{2}$						
			$\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}$				
Reject	$t < -t_{\alpha,v}$	t < -t	$_{\alpha/2,v} OR$	t	$> t_{\alpha,v}$		
lf d.f.	/s ²	$t > t_{\alpha/2}$	2,v				
	$v = \frac{\left(\frac{31}{n_1} + \frac{3}{n_2}\right)}{\frac{31}{n_1} + \frac{3}{n_2}}$	$\frac{\frac{12}{1_2}}{\frac{1}{2}}$	Round dov	vn to # i	n table]		
	$\left(\frac{s_1^2}{n_1}\right)^2$	$\left(\frac{s_2^2}{n_2}\right)^2$			-		
Conf.	$n_1 - 1 + 1$	n ₂ - 1		s ² s ²			
Limits	LCL	$(x_1 - x_2)$	$) - t_{\alpha/2,v} $	$\frac{1}{n_1} + \frac{1}{n_2}$			
	UCL	$(\bar{x}_1 - \bar{x}_2)$	$+ t_{\alpha/2,v} $	$\frac{3_1}{n_1} + \frac{3_2}{n_2}$			
13.3	1-Tail		2 -Tail	1	– Tail		
11	(Left Tail)		- 0	(Ri	ght Tail)		
H ₁	$\mu_D = 0$ $\mu_D < 0$		$u_D = 0$ $u_D \neq 0$	μ	$u_D = 0$ $u_D > 0$		
Note:	μ_D is	the mean	of the diffe	erences			
Test	between the two groups $t = \frac{\tilde{x}_D - \mu_D}{\tilde{x}_D - \mu_D}$						
Stat			$\frac{s_D}{\sqrt{n_D}}$				
Reject If	$t < -\overline{t_{\alpha,v}}$	t < -	$-t_{\alpha/2,v} \overline{OR}$	t	$> t_{\alpha,v}$		
d.f.	$v = n_D - 1$ [Rou	ind down	to nearest	# in table	e]		
Conf. Limits		LCL \bar{x}_D	$-t_{\alpha/2,v}\frac{s_E}{\sqrt{n}}$	D			
		UCL \bar{x}_D	$+ t_{\alpha/2,v} \frac{s_D}{\sqrt{n}}$	0			
13.4	1-Tail		2 –Tail		1 – Tail		
Ho	(Left Tail) σ ₁ ²		σ_1^2	(R	σ_1^2		
	$\frac{1}{\sigma_2^2} = 1$		$\frac{\sigma_1}{\sigma_2^2} = 1$		$\frac{1}{\sigma_2^2} = 1$		
H_1	$\frac{\sigma_1^2}{\sigma_2^2} < 1$		$\frac{\sigma_1^2}{\sigma_2^2} \neq 1$		$\frac{\sigma_1^2}{\sigma_2^2} > 1$		
Test Stat	-	F	$=\frac{s_1^2}{s_1^2}$		-		
Reject	$F < \frac{1}{2}$	<i>F</i> <	$\frac{S_2^2}{1}$ or	F	$> F_{\alpha, v_1, v_2}$		
If	$F \subset \overline{F_{\alpha,v_2,v_1}}$	F >	$F_{\alpha/2,v_2,v_1}$ $F_{\alpha/2,v_1,v_2}$				
d.f.	$v_1 = n_1 - 1, v_2$	$= n_2 - 1$	1 [Round d	own in ta	able]		
Limits	LCL $\left(\frac{1}{s_2^2}\right)$	$\int \frac{F_{\alpha/2,v_1,v_2}}{F_{\alpha/2,v_1,v_2}}$	UCL(s)	$F_{\alpha/2,v_2}$,v ₁		
12 E	1 Tail		7 Tail	1	Tail		
13.5	(Left Tail)		- 1011	(Ri	ght Tail)		
H_0 H_1	$p_1 - p_2 = D$ $p_1 - p_2 < D$	p_1	$-p_2 = D$ $-p_2 \neq D$	p ₁ -	$-p_2 = D$ $-p_2 > D$		
Note:	D is difference	between	the propor	tions (us	ually 0).		
Stat	z =		z =	ע≠0 			
	$\hat{p}_1 - \hat{p}_2$	1 \	(j	$(\hat{p}_1 - \hat{p}_2) + \hat{p}_1 - \hat{p}_2$	-D		
	$\sqrt{\hat{p}(1-\hat{p})}\left(\frac{1}{n_1}\right)$	$+\frac{1}{n_2}$	$\sqrt{\frac{p_1(1)}{n_1}}$	<u>+</u> +	n_2		
	$\hat{p} = \frac{x_1 + x_2}{x_1 + x_2}$						
Reject	$r n_1 + n_2$ $z < -z_\alpha$	z < -	$-z_{\alpha/2}$ OR	2	$z > z_{\alpha}$		
If		z > z	α/2		-		
Keq'd	$n_1 p_1 \ge 5$ $n_2 \hat{p}_2 \ge 5$	$n_1(1-j) = n_2(1-j)$	$(i_1) \ge 5$ $(i_2) \ge 5$				
Conf. Limits	LCL $(\hat{p}_1$	$(-\hat{p}_2) - \hat{z}_2$	$\frac{\hat{p}_1(1-\hat{p}_1)}{n}$	$\frac{1}{n} + \frac{\hat{p}_2(1-n)}{n}$	$-\hat{p}_{2})$		
	UCL (\hat{p}_1	$(-\hat{p}_2) + 2$	$\frac{\hat{p}_{1}(1-\hat{p}_{1})}{\hat{p}_{1}(1-\hat{p}_{1})}$	$\frac{1}{1} + \frac{\hat{p}_2(1)}{1}$	$-\hat{p}_{2})$		
			$\sqrt{n_1}$	n	2		
15.1		1 – Tail O	nly (Right T	ail)			
H ₀	$p_1 = \#, p_2 = \#,$	$\dots, p_k = i$	ŧ	aluc			
H ₁ Note:	Atleast one p_i is not it's specified value The # must be a number between 0 and 1 inclusive.						
Test Stat	$\chi^2 = \sum rac{(f-e)^2}{e}$ $e_i = np_i$						
Stat	both <i>f</i> and <i>e</i> must be a FREQUENCY, not a PROPORTION!						
D.:							
Keject If	$\chi^{-} > \chi^{2}_{\alpha,v}$						
d.f. Rea'd	v = k - 1 where "Rule of 5" expension	e k is the	number of	categorie ell must	es he > 5		
LANS M		and would					

14.1				1 – Tail O	nly (Right	Tail)		
H_0				$\mu_1 = \mu_2 =$	$= \mu_3 = \cdots$	$= \mu_k$		
-			[k i	is the numbe	r of group	s we have]		
H_1				At least 2	2 means di	ffer		
Note:	Use	ANO	/A table	e below!				
Test	F	$= \frac{MST}{MST}$						
Stat		MSE						
Reject	F >	$> F_{\alpha,v_1,\iota}$	⁷ 2					
II	whe		_ 1.	1				
Rea'd	Por	v_1	$-\kappa - $	$v_2 = n - r$	L			
noq u	Populations must be normal. Population variances must be equal							
				14.1 ANOVA	Table			
Source C	Df	Deg	rees	Sum Of	Mean	Squares	F-	
Variatio	n	Of		Squares			Statistic	
		Free	dom					
Treatme	nts	<i>k</i> -	- 1	SST	MST	= <u>SST</u>	1407	
(betwee	n)			227		$\frac{k-1}{ccc}$	$F = \frac{MSI}{MSF}$	
Error (within)		<i>n</i> -	- <i>ĸ</i>	SSE	MSE	$=\frac{33E}{1}$	MSE	
Total		<i>n</i> -	- 1	SSTotal =	SST+SSE	$n - \kappa$		
SST = n	$1(\bar{x}_1 -$	$(-\bar{x})^{2}+$	$n_2(\bar{x}_2)$	$(-\bar{x})^2 + \cdots +$	$-n_{\nu}(\bar{x}_{\nu} -$	$(\bar{x})^2$		
SSE = ($n_1 - 1$	$1)s_{1}^{2} +$	$(n_2 - $	$1)s_{2}^{2} + \cdots +$	$(n_k - 1)s$	2 k		
k = # of	group	DS _		n = Overall	sample siz	$n_1 + n_2$	$+\cdots n_k)$	
$n_{\#} = San$	nple si	ze of g	roup #	$s_{\#}^{2} = Varia$	nce of gro	up #		
$x_{\#} = i vie$	an or	group	# an of al	l complec) —	$n_1 \bar{x}_1 + n_2 \bar{x}_2$	$+\cdots+n_k\bar{x}_k$		
x = Gran	u IVlei	arı (IVIê	an of a	ii sampies) =	$n_1 + n_2 +$	+n _k		
16.2					inear Reg	ression		
Model			$y = \beta$	$_{0} + \beta_{1}x + \epsilon$				
Regressi	on Lii	ne	$\hat{y}=b_0$	$+b_1x$				
Coefficie	ents		$b_1 =$	$\frac{s_{xy}}{c^2}$ [Slope] b ₀ =	$\bar{y} - b_1 \bar{x}$	[Intercept]	
Covaria	nce		-	S _x ²	1 [-	-	$r_{i} \sum v_{i}$	
Covaria			Cov()	$(x, y) = s_{xy} =$	$\left \frac{1}{n-1}\right $	$x_i y_i - \frac{L}{2}$	n	
Varianc	e of X	:	2	1 [$\frac{1}{2}$ $(\sum x_i)$	2		
			$s_x^2 =$	$\frac{1}{n-1}\left \sum_{x}\right $	$t = \frac{n}{n}$	-]		
Varianc	e of Y		a ² -	1 \sum_{i}	$(\sum y_i)^2$	2		
	$s_y^2 = \frac{1}{n-1} \left[\sum y_i^2 - \frac{1}{n} \right]$							
Residua	$e_i = y_i - \hat{y}_i$							
Sum of S	Squares SSE = $\sum (y_i - \hat{y}_i)^2 = (n-1) \left(s_y^2 - \frac{s_{xy}^2}{s_y^2} \right)$							
Sum of S	Squares SSR = $\sum (\hat{y}_i - \bar{y})^2$							
for Regr	ression							
SSTotal	1		SSTot	al = SSE + S	SR			
Of Estim	1 Erro ate	r	. –	SSE				
or Louin			$S_{\epsilon} = 1$	$\sqrt{n-2}$				
Coefficie	ent of		D2 _	$S_{xy}^{2} = 1$	SSE	_ 1 S	SE	
Determin	nation		Λ –	$\frac{s_x^2 s_y^2}{s_x^2 s_y^2} = 1 - 1$	$\Sigma(y_i - \bar{y})$	$\frac{1}{5}$	ST	
Coefficie	ent of		r =	$\overline{R^2} = \frac{s_{xy}}{s_{xy}} =$	$1 - \frac{s}{s}$	SE		
Correlati	on			sxsy	$\sqrt{\sum(y_i)}$	$-\hat{y}_{i})^{2}$		
Interval	n		<u>.</u>		$1 (x_q)$	$(-\bar{x})^2$		
			y ±	$t_{\alpha/2,v} S_{\epsilon}$	+ n + (n - 1)	$(-1)s_x^2$	v = n - 2	
Confider	nce			ĺ	1 (r -	$(\bar{\mathbf{x}})^2$		
Interval 1	Estim	ate	ŷ	$\pm t_{\alpha/2,v}s_{\epsilon}$	$\frac{1}{n} + \frac{(\chi_g - \chi_g)}{(n - \chi_g)}$	$\frac{x}{1)e^2}$ v	= n - 2	
Value	cied			N	<i>n</i> (<i>n</i>)	L)3 _X		
xi		y _i		$x_i y_i$	x_i^2		y_i^2	
<data></data>	<	data>	Ca	alculate	Calculat	e Ca	alculate	
$\sum x_i =$		$\sum y_{i=}$		$\sum x_i y_i =$	$\sum x_i^2$	=	$\sum y_i^2 =$	
16.4		4 7 .		Test	tor Slope		T-:I	
16.4a		i-lai (left⊺-	i ail)	2 - 1	all	1 (Riv	- Tail ht Tail)	
H_0		$\beta_1 =$	0	B1 =	= 0	ß	$f_1 = 0$	
H_1		$\beta_1 <$	0	$\beta_1 \neq$	⊧ 0	β	1 > 0	
		Negati	ve	Some Lin	ear	Positive	Relationship	
T	re	elations	ship	Relations	nip			
1 est Stat		<i>t</i> =	$\frac{(b_1 - b_2)}{(b_1 - b_2)}$	p_1	where s _b	$_1 = \frac{S_e}{\sqrt{2}}$	42.2	
Paient	<u> </u>		S _b		0.0	\sqrt{n}	$1)S_x^2$	
Reject If	$t < -t_{\alpha,v} \qquad t < -t_{\alpha/2,v} \text{ OR } \qquad t > t_{\alpha,v}$							
				ι / ι _{α/2,ν}				
d.f.	v = n - 2 [Round down to nearest # in table]							
Conf. Limite	LCL $b_1 - (t_{\alpha/2,\nu})s_{b_1}$ UCL $b_1 + (t_{\alpha/2,\nu})s_{b_1}$							
Note	Use to determine if a linear relationship exists between an							
	independent and dependent variable (both must be normal)							
16.41		1.7	Te	st for Coeffic	ient of Co	rrelation	T-1	
16.40		i-Tai Left Ta	ail)	2 -1	all	1 (Ric	– Tail aht Tail)	
Ho	$\rho = 0$		$\rho = 0$		$\rho = 0$			
H ₁	<i>ρ</i> < 0)	$\rho \neq 0$		$\rho = 0$ $\rho > 0$		
	Negat		ive Some Linear		ear	Positive Relationship		
	relationship Relationship							
Test					n-2			
Sidi				t = r	$\sqrt{1-r^2}$			
Reject	1	t < -t	a,v	$t < -t_{\alpha/2}$,v OR	t	$> t_{\alpha,v}$	
If				$t > t_{\alpha/2,v}$	-			
	v = n - 2 [Round down to nearest # in table]							
d.f.	<i>v</i> =	n – 2	[Roun	d down to ne	arest # in	table]		
d.f. Note:	v = Use	n-2 to det	[Roun ermine	d down to ne if a linear re	arest # in lationship	table] exists betw	een any two	